

แนะน้ำงานซ่อมเครื่องปรับอากาศอินเวอร์เตอร์

1. อินเวอร์เตอร์ คืออะไร ?

เครื่องแปลงผันพลังงานไฟฟ้า(แรงดันและความถี่คงที่)ให้เป็นพลังงานไฟฟ้าที่สามารถปรับค่าได้

1. โครงสร้างแผงวงจรเครื่องปรับอากาศภายในรุ่น FTKM_S,FTKQ_SV2S

แผงควบคุมคอยล์เย็นรุ่น FTKM09,12,15SV2S

แผงควบคุมย่อยที่ต่อกับแผงควบคุมหลัก FTKM09,12,15SV2S

แผงควบคุมชุดรับสัญญาณ

การบอกตำแหน่งของสายที่ทำการเสียบที่แผง PCB ของชุดคอล์ยร้อน รุ่น RKM09,12,151,8,24SV2S,RKQ18SV2S

แผงควบคุมคอยล์เย็นรุ่น FTKM18,24,28SV2S

PCB กรองสัญญาณ PCB (อุปกรณ์เสริม)

วาริสเตอร์

แผงควบคุมย่อยที่ต่อกับแผงควบคุมหลัก FTKM18,24,28SV2S

เซนเซอร์ ตรวจจับ ความชื้น

แผงควบคุมชุดรับสัญญาณ

Intelligent Eye

แผงควบคุมคอยล์เย็นรุ่น FTKQ_SV2S

แผงควบคุมย่อยที่ต่อกับแผงควบคุมหลัก FTKQ_SV2S

แผงควบคุมชุดรับสัญญาณ

เซนเซอร์อุณหภูมิห้อง

แผงควบคุมคอยล์ร้อนรุ่น RKQ09,12SV2S ขั้วต่อมอเตอร์พัดลม DC ฟีวส์ 3.15A 51 2 AØS วาริสเตอร์ 8 17/12/04 14:13 15007-6 M6301_00 AMF04 ฟิวส์ 20A ขั้วต่อคอมเพรสเซอร์ ด้านหน้า ขั้วต่อเซนเซอร์ LED เอ็กแปนชั่นวาล์ว

แผงควบคุมคอยล์ร้อนรุ่น RKQ09,12SV2S

2. ฟังก์ชั้นและการควบคุม

คอมเพรสเซอร์

วาล์วขยาย

(Expantion.Valve)

2. 1 การควบคุมวัฏจักรสารทำความเย็นด้วยอุปกรณ์เทอร์มิสเตอร์

จากตำแหน่งหรือจากวงจร

2.2 การควบคุมอุณหภูมิเครื่องปรับอากาศไดกิ้นอินเวอร์เตอร์

2.3 Hybrid Cooling ไฮบริดคูลลิ่ง

* การทำความเย็นแบบไฮบริดดูลลิ่งจะสามารถ ทำงานได้เมื่อเลือกโหมด Cool หรือ Dry เท่านั้น * ในโหมด Cool การทำความเย็นแบบไฮบริดคู ลลิ่ง จะทำงานอัตโนมัติเพื่อให้อุณหภูมิห้องเข้า ใกล้เป้าหมายที่ตั้งค่าจากรีโมทคอนโทรล เมื่อ อุณหภูมิห้องสูงขึ้นเครื่องจะกลับมาทำความเย็น ปกติโดยอัตโนมัติ

* ในโหมด Dry พัดลมจะถูกความคุมเป็นแบบ ้อัตโนมัติและช่วยลดความชื้น

2.4 กระบวนการลดความชื้น

- (1) อากาศด้านดูด
- (2) ลดความชื้นอากาศด้านดูด (อากาศไหลผ่านส่วนที่เย็น ของเครื่องแรกเปลี่ยนความร้อนภายในอาคาร)
- (3) อากาศที่ถูกลดความชื้นผสมกับอากาศภายในห้อง

2.5 ทำสอบกระบวนการลดความชื้นรุ่น FTKM_N_VS_FTKM_S

อ้างอิงถึงตารางด้านล่าง (a) Thermostat ON และ (b) Thermostat OFF ของอุณหภูมิห้องต่างๆเมื่อเริ่มต้นทำงานในโหมด Dry <u>ดารางที่ 1</u>

อุณหภูมิเมื่อเริ่มต้นทำงานโหมด Dry	(a) Thermostat ON	(b) Thermostat OFF	(c)	(d)
26° C ≤ Room temperature	-2.5	-3	-1.5	-2
23° C ≤ Room temperature < 26° C	-2.5	-3	-1.5	-2
Room temperature < 23° C	-2	-2.5	-1	-1.5

อ้างอิงหัวข้อ 2.2

3. การวิเคราะห์ปัญหาระบบเครื่องปรับอากาศอินเวอร์เตอร์

3.1 การวิเคราะห์ปัญหาด้วยหลอด LED

เครื่องชุดคอยล์เย็นและชุดคอยล์ร้อนไม่ทำงานและมีไฟสีเขียวกระพริบ อาการนี้แสดงว่าเครื่องเตือนว่าเครื่องมีอาการผิดปกติสามารถกดหาอาการผิดปกติได้โดยการกดที่รีโมท

3.1.2 ขั้นตอนการหาอาการผิดปกติ

วิธีการตรวจเซ็คป[ั]ญหาจะแตกต่างกันขึ้นอยู่กับว่ามีปุ่ม MODE หรือไม่ ต่อไปจะกล่าวถึงวิธีการ ตรวจเซ็คป[ั]ญหาแยกตามรุ่นของรีโมทคอนโทรล

วิธีที่ 1

1.กดที่ปุ่ม Cancel ค้างไว้ 5 วินาที
2.จะมี 00 กระพริบที่จอ
กดปุ่ม Cancel อีกครั้งแต่กดปล่อยไปเรื่อยๆ
4.อาการผิดปกติจะเปลี่ยนไปเรื่อยๆ
ร.หาจนกว่าจะได้ยินเสียงปี้บยาว

เมื่อหาอาการผิดปกติจากรีโมทได้แล้วให้ดู ความหมายของอาการผิดปกติจากแผ่นพับหรือ เอกสาร

กดปุ่ม cancel

วิธีที่ 2 1. กดที่ปุ่ม Temp 🛦 Temp 🔻 + Mode หน้าจอ LCD จะเปลี่ยนเป็น SC 2. กดปุ่ม Temp ▲ Temp ▼ แล้วเลือก SC (Service check) 3. กดปุ่ม Mode เพื่อเข้าสู่โหมด service check และหน้าจอจะเปลี่ยนเป็น 00 4. กดปุ่ม Temp ▲ หรือ Temp ▼ จนกระทั่ง ได้เสียงบี๊ปๆ ติดต่อกัน หรือเสียงบี๊ปยาว 5. กดปุ่ม Mode อีกครั้ง 1,3,5,7 6. กดปุ่ม Temp 🛦 หรือ Temp 🔻 จนกระทั่ง ได้เสียงบี้ปยาว และตรวจสอบรหัสข้อผิดพลาด 7. ถ้าต้องการออกสู่หน้าจอปกติให้กดปุ่ม Mode ้ค้างไว้ 5 วินาที

รีโมทคอนโทรลรุ่นที่มีปุ่ม 【MODE】ARC466A14

วิธีที่ 2

1. กดที่ปุ่ม Temp ▲ Temp ▼ + Mode
2. กดปุ่ม Mode เพื่อเข้าสู่โหมด service check
และหน้าจอจะเปลี่ยนเป็น 00

3. กดปุ่ม Temp ▲ หรือ Temp ▼ จนกระทั่ง
ได้เสียงบี๊ป ๆ ติดต่อกัน หรือเสียงบี๊ปยาว
4. กดปุ่ม Mode อีกครั้ง
5. กดปุ่ม Temp ▲ หรือ Temp ▼ จนกระทั่ง

ได้เสียงบี้ปียาว และตรวจสอบรหัสข้อผิดพลาด 6. ถ้าต้องการออกสู่หน้าจอปกติให้กดปุ่ม Mode ค้างไว้ 5 วินาที

รีโมทคอนโทรลรุ่นที่มีปุ่ม 【_{MODE}】

รีโมตรุ่นที่ไม่มีปุ่ม MODE			
วิธีที ่ 2			
1. กดที่ปุ่ม Temp ▲ Temp ▼ + OFF หน้าจอ LCD จะเปลี่ยนเป็น SC			
2. กดปุ่ม Temp 🔺 Temp 🔻 แล้วเลือก SC (Service			
check)	รหัสข้อผิดพลาด		1
3. กดปุ่ม FAN เพื่อเข้าสู่โหมด service check และหน้าจอ จะเปลี่ยนเป็น 00		DRY FAN ONLY	• •
4. กดปุ่ม Temp ▲ หรือ Temp ▼ จนกระทั่งได้เสียง บี๊ป ๆ ติดต่อกัน หรือเสียงบี๊ปยาว	1,2,4,6	TEMP SENSOR POWERFUL SWING	. 3,5,7
5. กดปุ่ม FAN อีกครั้ง		QUIET COMFORT	
6. กดปุ่ม Temp ▲ หรือ Temp ▼ จนกระทั่งได้เสียง บี๊ปยาว และตรวจสอบรหัสข้อผิดพลาด		ON TOFF CANCEL	
7. ถ้าต้องการออกสู่หน้าจอปกติให้กดปุ่ม FAN ค้างไว้ 5		ARC480A21	
วินาที			
	A	RC480A21,32	

3.2 การวิเคราะห์ปัญหาระบบเครื่องปรับอากาศอินเวอร์เตอร์จากรหัสผิดปกติ (Error Code)

รหัสผิดปกติ	จุดที่พบปัญหา
U	<u>າ</u>
A,C	คอยล์เย็น
E~P	คอยล์ร้อน

3.3 รหัสผิดปกติ (Error Code)

อาการผิดปกติที่รีโมท	ความหมายของอาการผิดปกติ
A1	แผง PCB ชุดคอยล์เย็นเสียหรือไฟฟ้าตก
A6	มอเตอร์คอยล์เย็นเสียหรือแผง PCB เสีย
C4	เซ็นเซอร์น้ำแข็งค่าความต้านทานผิดปกติ
C9	เซ็นเซอร์อุณหภูมิค่าความต้านทานผิดปกติ
U0	น้ำยาน้อยวาล์วลดแรงดันน้ำยาเสีย
U4	การส่งสัญญาณระห่างชุดคอยล์เย็นกับคอยล์ร้อน ผิดปกติหรือแผง PCB ชุดคอยล์ร้อนเสีย
L5	คอมเพรสเซอร์หรือแผง PCB ชุดคอยล์ร้อนเสีย
H6	คอมเพรสเซอร์กินกระแสสูง

3.4 การตรวจเซ็คเครื่องเสียตามอาการผิดปกติที่สามารถเซ็คได้ที่รีโมท

A1

แผง PCB ชุดคอยล์เย็นเสียหรือไฟฟ้าตก

ตรวจเช็คแรงดันไฟฟ้าที่จ่ายให้กับเครื่องปรับอากาศว่ามีแรงดันไฟฟ้าตกหรือไม่ ถ้า ไฟฟ้ามาครบให้ เปิด ปิดเบรกเกอร์ใหม่ ถ้าไม่หายให้เปลี่ยนแผง PCB ที่คอยล์เย็น

มอเตอร์คอยล์เย็นเสียหรือแผง PCB เสีย

ขั้นตอนการตรวจเช็คมีดังนี้

A6

ตรวจเช็คมอเตอร์คอยล์เย็นและแผงบอร์ดคอยล์เย็นว่าอะไหล่ส่วนใดเสียโดยที่มอเตอร์ ของคอยล์เย็นจะมีอยู่ด้วยกัน 2 ชนิดคือ มอเตอร์กระแสสลับกับมอเตอร์กระแสตรงโดยให้สังเกต จากขั้วมอเตอร์ สำหรับวิธีการตรวจสอบให้อ้างอิงในหัวข้อด้านล่าง

วงจรไฟฟ้าชุดเครื่องปรับอากาศภายในห้อง

FTKM09/12/15SV2S

ขั้นตอนการตรวจเช็คโดยการใช้มัลติมิเตอร์วัดค่า

การวัดค่าแรงดันไฟฟ้าต้องเปิดเบรคเกอร์จ่ายไฟแต่ไม่ต้องเปิดรีโมทเพื่อทำการวัดค่า เข็ม ของมิเตอร์ที่วัดนั้นต้องมีลักษณะปลายแหลม

ขั้นตอนการตรวจเช็คมอเตอร์ รุ่น FTKM-S Series, FTKQ_SV2S Series

- 1. เช็คสายไฟมอเตอร์ ว่ามีการ รอยไหม้เสียหาย และจุดต่อสายไฟ ว่าแน่นหรือไม่
- ปิดแหล่งจ่ายไฟและถอดขั้วต่อมอเตอร์พัดลมออกจากแผงควบคุม แล้ววัดค่าความต้านทานของสาย U-V (12-9) และ V-W (9-6) ประมาณ 90-100 Ω
- 3. เปิดแหล่งจ่าย , เครื่องยังไม่ทำงานและมอเตอร์ยังต่ออยู่ที่แผงควบคุมแล้วเซ็คตามขั้นตอนการตรวจเซ็คด้านล่าง
- 4. วัดค่าแรงดันไฟที่จุดต่อ 2 และ 3 ว่ามีค่าแรงดันไฟ 15VDC หรือไม่
- 5. วัดค่าแรงดันไฟที่จุดต่อ 1 และ 3 เมื่อมอเตอร์หมุนหนึ่งรอบจะมีสัญญาณออกมา 4 พลัส

C4

เซ็นเซอร์น้ำแข็งค่าความต้านทานผิดปกติ

	<u>ตารางที่ 1</u>	
	เทอร์มิสเตอร์	ค่าความต้านทาน
	อุณหภูมิ	R 25 °C = 20 k Ω B = 3950
	-20	211.0 (kΩ)
	-15	150
	-10	116.5
	-5	88
REALIZED CONTRACTOR	0	67.2
195-	5	51.9
	10	40
	15	31.8
	20	25
	25	20
	30	16
Contraction of the second	35	13
	40	10.6
	45	8.7
	50	7.2

ขั้นตอนการตรวจเช็ค ตรวจเช็คจุดต่อสายว่าหลุดหลวมหรือไม่ ให้ทำการนำมัลติมิเตอร์ตั้ง ย่านวัดค่าความต้านทานวัดที่เซนเซอร์แล้วนำค่าไปเปรียบเทียบกับตาราง เพราะค่าความต้านทานจะ แปรผันตามอุณหภูมิ (ตั้งย่านวัดโอห์มมิเตอร์ที่ x 1K**Ω**)

C9

เซ็นเซอร์อุณหภูมิห้องค่าความต้านทานผิดปกติ

<u>ตารางที่ 2</u>

ขั้นตอนการตรวจเซ็ค ตรวจเซ็คจุดต่อสายว่าหลุดหลวมหรือไม่ ให้ทำการ นำมัลติมิเตอร์ตั้งย่านวัดค่าความต้านทานวัดที่เซนเซอร์แล้วนำค่าไป เปรียบเทียบกับตาราง เพราะค่าความต้านทานจะแปรผันตามอุณหภูมิ

เซ็นเซอร์ความชื้นค่าความต้านทานผิดปกติ

การวัดเซนเซอร์วัดความชื้น (Humidity Sensor) FTKM_S

 1.ตรวจสอบการเชื่อต่อขั้วต่อสาย
2.ตรวจวัดแรงดันไฟฟ้าที่ ขา 1 กับ ขา 3
3.ตรวจวัดแรงดันไฟฟ้าที่ ขา 2 กับ ขา 3
4.ย้ายตำแหน่งที่อยู่ของเซนเซอร์แล้ววัด ตรวจวัดแรงดันไฟฟ้าที่ ขา 2 กับ ขา 3 ใหม่ *

CC

(R20681)

ขั้วเซนเซอร์วัดความชื้น	ค่าแรงดันไฟฟ้า
1 กับ 3	5 Vdc.
2 กับ 3	1-5 Vdc.
2 กับ 3 *	ต้องเปลี่ยนแปลงจากเดิม

* อาจใช้การหายใจเบา ๆ ใกล้ ๆ กับเซนเวอร์วัดความชื้น

U4	การส่งสัญญาณระห่างชุดคอล์ยเย็นกับคอล์ย ร้อนผิดปกติหรือแผง PCB ชุดคอล์ยร้อนเสีย
สาเหตุ : 1. แรงดันไฟฟ้าต 2. การต่อสายผิด 3. สายควบคุม (เร 4. มอเตอร์พัดลม 5. รูปคลื่นไฟฟ้าผี 6. แผงควบคุมขอ 7. แผงควบคุมขอ	ก บอร์ 3) ขาด, หลุด, หลวม ชุดคอยล์ร้อนช๊อต เดปกติ งชุดคอยล์ร้อนเสีย งชุดคอยล์เย็นเสีย

้วิธีการตรวจสอบปัญหา U4 โดยใช้มัลติมิเตอร์อนาล็อก

1.วัดแรงไฟฟ้าสัญญาณควบคุมตามตาราง 2.ตรวจเช็คการต่อสาย

3. ตรวจสอบสายควบคุม(เบอร์ 3) ขาด, หลุด, หลวม

_ แรงดันไฟฟ้าที่วัดได้

LNG

วัดที่เทอร์มินอลเบอร์	รุ่นอินเวอร์เตอร์
1 ~ 2	220 Vac ± ไม่เกิน10%
3 ~ 2	50 ~ 60 Vac (เข็มมิเตอร์จะกระดิก)

เทอร์มินอล เบอร์	รุ่น อินเวอร์เตอร์	รุ่นธรรมดา
1	L	L
2	Ν	С
3	С	Ν

วิธีการตรวจเช็คแผงควบคุมชุดคอยล์ร้อน และคอยล์เย็น

การว ัด 3 ~ 2	แผงควบคุมชุด คอยล์เย็น	แผงควบคุมชุด คอยล์ร้อน
วัดแรงดันไฟฟ้าได้ 50 ~ 60 Vac และเข็มมิเตอร์ กระดิก	ปกต ิ	ปกติ
วัดแรงดันไฟฟ้าได้ 100 Vac. แต่เข็ม ไม่กระดิก	เสีย	ปกติ
วัดแรงดันไฟฟ้าได้ 0 Vac.	ปกติ	เสีย

ีวิธีการตรวจสอบปัญหา U4 โดยใช้มัลติมิเตอร์ดิจิตอล

ตรวจเช็คค่าแรงดันไฟฟ้าของสัญญาณระหว่าง S – N (2 – 3) โดยใช้เครื่องมัลติมิเตอร์ในโหมดแรงดันไฟฟ้า DC หมายเหตุ : เนื่องจากเป็นการตรวจเช็คอย่างง่าย ๆ ค่าแรงดันไฟฟ้าที่วัดได้จากมัลติมิเตอร์แต่ละตัว จึงอาจจะ ไม่เท่ากัน

ตรวจเช็คค่าแรงดันไฟฟ้าของสัญญาณระหว่าง S – N (2 – 3) โดยใช้เครื่องมัลติมิเตอร์ในโหมดแรงดันไฟฟ้า DC หมายเหตุ : เนื่องจากเป็นการตรวจเช็คอย่างง่าย ๆ ค่าแรงดันไฟฟ้าที่วัดได้จากมัลติมิเตอร์แต่ละตัว จึงอาจจะไม่เท่ากัน

F3

การทำางานผิดปกติของอุณหภูมิท่อจ่ายอากาศ

ขั้นตอนการตรวจสอบ

- 1. ตรวจสอบสายเซนเซอร์ขาดหรือไม่
- 2. ตรวจสอบค่าความต้านทานของเซนเซอร์ (อ้างอิงค่าความต้านทานจากตารางที่ 8)
- 3. ตรวจสอบเอ็กแปนชั่นวาล์ว
- 4. คอยล์ร้อยระบายความร้อนไม่ได้ หรือสารทำความเย็นขาด
- 5. สต๊อปวาวล์ผิดปกติ

ตรวจเช็คอุปการณ์ลดแรงดันน้ำยา (Expansion Valve)

การตรวจเช็คเบื้องต้นโดยการสังเกตจากหมวกครอบวาล์วว่าภายในหมวกมีคราบสนิม ถ้ามีต้องเปลี่ยนหรือในกรณีที่ เปิดเบรกเกอร์ใหม่จะมีเสียแต็ก ๆแสดงว่า EXP ทำงาน

EXP ปกติ

EXP เป็นสนิม

ขั้นตอนการตรวจสอบเอ็กแปนชั่นวาล์วรุ่น FTKM_SV2S, FTKQ_SV2S

- 1. ตรวจสอบการเชื่อมต่อเอ็กแปนชั่นวาวล์เข้ากับแผงควบคุมหรือไม่
- 2. ปิดเครื่องแล้วเปิดใหม่อีกครั้ง และตรวจสอบว่ามีเสียงที่เอ็กแปนชั่นวาล์วหรือไม่
- 3. ถ้าไม่มีเสียงตามขั้นตอนที่ 2 ให้ถอดเอ็กแปนชั่นวาล์วออกเพื่อตรวจสอบค่าความต้านทานโดยมัลติมิเตอร์
- 4. ตรวจสอบค่าความต้านทานระหว่าง Pin 5 1, 5 2, 5 3, 5 4 (สำหรับขั้วต่อ 5Pin) และ 6 1, 6 2, 6 - 3, 6 – 4 (สำหรับขั้วต่อ 6Pin) ต้องมาค่าความต้านทานเท่ากัน ถ้าไม่มีค่าความต้านทานแสดงว่าเอ็ก แปนชั่นวาล์วผิดพลาด
- 5. ถ้าค่าความต้านทานปกติ แสดงว่าแผง PCB Main ผิดปกติ

์ขั้นตอนการตรวจสอบ สารทำความเย็นขาด

ทำการตรวจเซ็คแรงดันน้ำยาโดยการใช้เกจวัดแรงดันวัดแรงดันต้องอยู่ตามที่กำหนด กระแสตามเนมเพลท ถ้า ไม่อยู่ในค่าที่กำหนดแสดงว่าน้ำยารั่ว ต้องทำการตรวจเซ็คหารอยรั่วแล้วทำการซ่อมรั่วก่อน การทำระบบน้ำยาใหม่หลังจากทำ การซ่อมรั่วและแว็คคั่มระบบเรียบร้อยแล้วให้ทำการเติมน้ำยาเข้าไปในระบบโดยการชั่งน้ำหนักเติมเข้าไป

L5

คอมเพรสเซอร์หรือแผง PCB ชุดคอยล์ร้อนเสีย

สาเหตุที่ทำให้เกิดอาการผิดปกติ L5

- 1. สตอปวาล์วไม่ได้เปิด
- 2. แผงเพาเวอร์โมดูลเสีย
- 3. แรงดันไฟฟ้าแหล่งจ่ายผิดปกติ
- 4. แผง PCB เสีย
- 5. คอมเพรสเซอร์เสีย

การตรวจเช็คโดยการสังเกตที่แผง PCB ทั้งสองชุดว่ามีรอยไหม้หรือไม่และตรวจเช็ค แรงดันไฟฟ้าที่จ่ายให้กับเครื่องปรับอากาศโดยการใช้มัลติมิเตอร์วัด

คอมเพรสเซอร์กินกระแสสูงหรือแผง PCB เสีย

H6

การตรวจเช็คเบื้องต้นโดยการสังเกตที่แผงบอร์ด ชุดคอยล์ร้อนว่ามีรอยไหม้ของการซ็อต หรือไม่ และสังเกตจากหลอด LED สีเขียวว่ามีการกระพริบหรือไม่ ถ้ามีแสดงว่ามีไฟจ่ายเข้าที่แผงบอร์ด

ขั้นตอนการตรวจวัดแผงควบคุมช้อตเซอร์กิต (แบบที่ 1 ใช้ดิจิตอลมิเตอร์)

- 1. ตรวจสอบแรงดันไฟฟ้าระหว่างขั้ว + และ ของบริดไอโอดแรงดันที่ได้ประมาณ 0 VDC ก่อนทำการวัดค่า
- 2. การวัดไดโอดบริดโดยการวัดค่าความต้านทาน ปรับย่านวัดโอห์มมิเตอร์ ไปที่ตำแหน่ง X 1ห Ω
- วัดค่าความต้านทานของบริดไอโอดให้ได้ตามตารางด้านล่าง ตารางที่ <u>3</u>

ตำแหน่งสายวัด (+) ของโอห์มมิเตอร์	~(2, 3)	+(4)	~(2, 3)	-(1)
ตำแหน่งสายวัด (-) ของโอห์มมิเตอร์	+(4)	~(2, 3)	-(1)	~(2, 3)
ค่าความต้านทานปกติ (OK)		ค่าอยู่ระหว่าง I	κ Ω ถึง м Ω	
ค่าความต้านทานไม่ปกติ (เสีย)	0 โอมห์ หรือวัดค่าไม่ได้ ∞			

ขั้นตอนการตรวจวัดแผงควบคุมช๊อตเซอร์กิต (แบบที่ 1 ใช้ดิจิตอลมิเตอร์)

- 1. ตรวจสอบแรงดันไฟฟ้าระหว่างขั้ว + และ ของบริดไอโอดแรงดันที่ได้ประมาณ 0 VDC ก่อนทำการวัดค่า
- 2. การวัดไดโอดบริดโดยการวัดค่าแรงดันไฟฟ้าตกคร่อมปรับย่านไปที่ตำแหน่งวัดไดโอดบริศ 🖂 😁
- 3. วัดค่าแรงดันไฟฟ้าตกคร่อมของบริดไอโอดให้ได้ตามด้านล่าง

* ค่าแรงดันไฟฟ้าตกคร่อมเมื่อไดโอดนำกระแส ประมาณ 0.4 – 0.5 โวลท์

การวัดไดโอดบริดโดยการวัดค่าความต้านทาน (แบบที่ 2) ปรับย่านวัดโอห์มมิเตอร์ R X 1Ω

ี่ ขั้นตอนที่ 1 เข็มมิเตอร์ขั้วบวกวัดที่ขั้วบวก ของไดโอดบริดจ์ และเข็มมิเตอร์ขั้วลบวัดที่ขั้ว ลบของไดโอดบริดจ์ จะต้องมีค่าความต้านทาน <u>ขั้นตอนที่ 2</u> เข็มมิเตอร์ขั้วลบวัดที่ขั้วบวกของ ไดโอดบริดจ์ และเข็มมิเตอร์ขั้วบวกวัดที่ขั้วลบ ของไดโอดบริดจ์ จะต้องเป็นอินฟินิตี้ ∞

* ใช้มัลติมิเตอร์อนาล็อกในการวัดค่าความต้านทาน

ี่ ขั้นตอนที่ 3 เข็มมิเตอร์ขั้วบวกวัดที่ ขั้ว ~ของไดโอดบริดจ์ และเข็มมิเตอร์ขั้วลบวัดที่ ขั้ว~ของไดโอดบริดจ์ จะต้องเป็น อินฟินิตี้ ∞ <u>ขั้นตอนที่ 4</u> เข็มมิเตอร์ขั้วลบวัดที่ ขั้ว ~ของไดโอดบริดจ์ และเข็มมิเตอร์ขั้วบวก วัดที่ขั้ว~ของไดโอดบริดจ์ จะต้องเป็น อินฟินิตี้ ∞

การตรวจวัดแผงเพาเวอร์อินเวอร์เตอร์ (แผงเพาเวอร์โมดูล)ช้อตเซอร์กิต

ขั้นตอนการตรวจสอบ 1. ตรวจสอบแรงดันไฟฟ้าระหว่างขั้ว + และ – ของเพาเวอร์โมดูลแรงดันที่ได้ ประมาณ 0 VDC ก่อนทำการวัดค่า 2. การวัดเพาเวอร์โมดูลโดยการวัดค่า ความต้านทาน ปรับย่านวัดมัลติมิเตอร์ ไปที่ตำแหน่ง X 1KΩ 3. วัดค่าความต้านทานขอเพาเวอร์โมดูล ให้ได้ตามตารางด้านล่าง * สำหรับรุ่น

RKM09,12,15,18,24SV2S,RKQ18SV2S

<u>ตารางที่ 4</u>

ตำแหน่งสายวัด (+) ของโอมห์มิเตอร์	DC+	U,V,W	DC-	U,V,W
ตำแหน่งสายวัด (-) ของโอมห์มิเตอร์	U,V,W	DC+	U,V,W	DC-
ค่าความต้านทานปกติ (OK)	ค่าอยู่ระหว่าง K $m \Omega$ ถึง M $m \Omega$			
ค่าความต้านทานไม่ปกติ (เสีย)	0 โอมห์ หรือวัดค่าไม่ได้ ∞			

การตรวจวัดแผงเพาเวอร์อินเวอร์เตอร์ (แผงเพาเวอร์โมดูล)ช้อตเซอร์กิต

ขั้นตอนการตรวจสอบ 1. ตรวจสอบแรงดันไฟฟ้าระหว่างขั้ว + และ – ของเพาเวอร์โมดูลแรงดันที่ได้ ประมาณ 0 VDC ก่อนทำการวัดค่า 2. การวัดเพาเวอร์โมดูลโดยการวัดค่า ความต้านทาน ปรับย่านวัดมัลติมิเตอร์ ไปที่ตำแหน่ง X 1KΩ 3. วัดค่าความต้านทานขอเพาเวอร์ โมดูลให้ได้ตามตารางด้านล่าง * สำหรับรุ่น RKQ09,12SV2S

แผง PCB ด้านหลัง

แผง PCB ด้านหน้า

<u>ตารางที่ 5</u>

ตำแหน่งสายวัด (+) ของโอมห์มิเตอร์	DC+	U,V,W	DC-	U,V,W
ตำแหน่งสายวัด (-) ของโอมห์มิเตอร์	U,V,W	DC+	U,V,W	DC-
ค่าความต้านทานปกติ (OK)	ค่าอยู่ระหว่าง K $m \Omega$ ถึง M $m \Omega$			
ค่าความต้านทานไม่ปกติ (เสีย)	0 โอมห์ หรือวัดค่าไม่ได้ ∞			

การตรวจวัดแผงเพาเวอร์อินเวอร์เตอร์ (แผงเพาเวอร์โมดูล)ช้อตเซอร์กิต

<u>ตารางที่ 6</u>

ตำแหน่งสายวัด (+) ของโอมห์มิเตอร์	DC+	U,V,W	DC-	U,V,W
ตำแหน่งสายวัด (-) ของโอมห์มิเตอร์	U,V,W	DC+	U,V,W	DC-
ค่าความต้านทานปกติ (OK)		ค่าอยู่ระหว่าง I	≺ Ω ถึง M Ω	
ค่าความต้านทานไม่ปกติ (เสีย)		0 โอมห์ หรือวัง	ดค่าไม่ได้ ∞	

์การตรวจวัดแผงเพาเวอร์อินเวอร์เตอร์ (แผงเพาเวอร์โมดูล)ช้อตเซอร์กิต (ต่อ)

<u>ขั้นตอนที่ 1</u> เข็มมิเตอร์<mark>ขั้วบวก</mark>วัดที่ขั้วบวก ของแผงบอร์ด และเข็มมิเตอร์<mark>ขั้วลบ</mark>วัดที่ขั้ว U ,V, W ค่าอยู่ระหว่าง KΩ ถึง MΩ ถ้าเสียจะวัดได้เป็น∞

<u>ขั้นตอนที่ 2</u> เข็มมิเตอร์<mark>ขั้วลบ</mark>วัดที่<mark>ขั้วบวก</mark>ของ แผงบอร์ด และเข็มมิเตอร์<mark>ขั้วบวก</mark>วัดที่ขั้ว U ,V, W ค่าอยู่ระหว่าง KΩ ถึง MΩ <mark>ถ้าเสียจะวัดได้เป็น∞</mark>

์การตรวจวัดแผงเพาเวอร์อินเวอร์เตอร์ (แผงเพาเวอร์โมดูล)ช้อตเซอร์กิต (ต่อ)

<u>ขั้นตอนที่ 3</u> เข็มมิเตอร์<mark>ขั้วบวก</mark>วัดที่<mark>ขั้วลบ</mark>ของ แผงบอร์ด และเข็มมิเตอร์<mark>ขั้วลบ</mark>วัดที่ขั้ว U ,V, W ค่าอยู่ระหว่าง KΩ ถึง MΩ <mark>ถ้าเสียจะวัดได้เป็น∞</mark> <u>ขั้นตอนที่ 4</u> เข็มมิเตอร์<mark>ขั้วลบ</mark>วัดที่<mark>ขั้วลบ</mark>ของ แผงบอร์ด และเข็มมิเตอร์<mark>ขั้วบวก</mark>วัดที่ขั้ว U ,V, W ค่าอยู่ระหว่าง KΩ ถึง MΩ <mark>ถ้าเสียจะวัดได้เป็น∞</mark>

การตรวจวัดแผงเพาเวอร์โมดูลด้วย Inverter Analyzer Check

Inverter Analyzer Check

แผงควบคุมคอยล์ร้อน

RSUK0917A

* ถ้าไฟ LED ทั้งหมดติดกระพริบเท่ากันแสดงว่าคอมเพรสเซอร์จะชำรุด

ขั้นตอนเข้าฟังก์ชั้นทดสอบ Inverter Analyzer รุ่น FTKC-Q,R, FTKQ_S

เปิดใช้งานการทดสอบการทำงานของพาวเวอร์ทรานซิสเตอร์จากแอร์ตัวใน

- 1. เปิดเบรกเกอร์
- กดปุ่ม OFF + Temp V + Temp ∧
- 3. กดปุ่ม Temp **^** เลื่อนขึ้นเพื่อเลือก T
- 4. กดปุ่ม FAN
- 5. กดปุ่ม FAN ONLY เพื่อทดสอบชุดพาวเวอร์ทรานซิสเตอร์

* รอประมาณ 5 นาที่จะมีไฟกระพริบทั้งหมด 6 ดวง ถ้าไม่ได้ให้ลองทำตาม ขั้นตอนใหม่อีกครั้ง

2,3

ขั้นตอนเข้าฟังก์ชั้นทดสอบ Inverter Analyzer รุ่น FTKM_S

เปิดใช้งานการทดสอบการทำงานของพาวเวอร์ทรานซิสเตอร์จากแอร์ตัวใน

- 1. เปิดเบรกเกอร์
- 2. กดปุ่ม Mode บนรีโมทคอนโทรลเพื่อเลือกโหมด FAN
- 3. กดปุ่ม Temp ▲+ Temp ▼+ Mode พร้อมๆกัน
- 4. กดปุ่ม Temp ▲ หรือ Temp ▼ เพื่อเลือก T
- 5. กดปุ่ม Mode เพื่อเริ่มต้นทดสอบชุดพาวเวอร์ทรานซิสเตอร์
- 6. กดปุ่ม On/Off เพื่อเปิดเครื่อง

* รอประมาณ 5 นาที่จะมีไฟกระพริบทั้งหมด 6 ดวง ถ้าไม่ได้ให้ลองทำตาม ขั้นตอนใหม่อีกครั้ง

ARC466A14

ขั้นต่อนการตรวจเช็คคอมเพรสเซอร์

จะใช้การวัดค่าความต้านของขดลวดโดยใช้มัลติมิเตอร์หรือ การวัดค่าความเป็นฉนวนของขดลวด คอมเพรสเซอร์ โดยการใช้เมกกะโอมห์วัดค่า ผลการวัดค่าที่ได้ต้องเป็นอนันต์ (อินฟินีตี้ ∞) แต่ถ้าวัดแล้วมีความต้านทาน จะต้องเปลี่ยนคอมเพรสเซอร์ตัวใหม่

การวัดโดยใช้เมกะโอมห์วัดค่าความเป็นฉนวนของขดลวด คอมเพรสเซอร์

ขั้นตอนการตรวจเช็คคอมเพรสเซอร์ (ต่อ)

การวัดค่าความต้านทานคอมเพรสเซอร์ โดยวัดเทียบขั้ว U V W ค่าความต้านทานต้องได้เท่ากันทุกคู่

วงจรขคลวคคอมเพรสเซอร์ 3 เฟส, คอมเพรสเซอร์สวิ่งในรุ่นอินเวอร์เตอร์

เซนเซอร์อุณหภูมิอากาศชุดคอยล์ร้อนผิดปกติ

เทอร์มิสเตอร์ อณหกมิ	ค่าความต้านทาน R(25°C) = 20 k Ω
	Β = 3950 K Ω
-20	197.8
–15	148.2
-10	112.1
-5	85.60
0	65.93
5	51.14
10	39.99
15	31.52
20	25.02
25	20
30	16.10
35	13.04
40	10.62
45	8.707
50	7.176

H9

ขั้นตอนการตรวจเช็ค ตรวจเช็คจุดต่อสายว่าหลุดหลวมหรือไม่ ให้ทำการนำมัลติมิเตอร์ตั้งย่าน วัดค่าความต้านทานวัดที่เซนเซอร์แล้วนำค่าไปเปรียบเทียบกับตาราง เพราะค่าความต้านทานจะแปรผันตาม อุณหภูมิ (ตั้งย่านวัดโอห์มมิเตอร์ที่ x1KΩ)

J3	เซนเซอร์อุณ	หภูมิท่อด้านส่งผิด	ปกติ
	<u>ตารางที่ 8</u>	เทอร์มิสเตอร์ อุณหภูมิ	ค่าความต้านทาน R(25°C) = 20 kΩ B = 3950 KΩ
		-20	197.8
		–15	148.2
		-10	112.1
		5	85.60
		0	65.93
		5	51.14
		10	39.99
		15	31.52
		20	25.02
		25	20
	and the second se	30	16.10
		35	13.04
		40	10.62
No.2		45	8.707
		50	7.176

ขั้นตอนการตรวจเช็ค ตรวจเช็คจุดต่อสายว่าหลุดหลวมหรือไม่ ให้ทำการนำมัลติมิเตอร์ตั้งย่าน วัดค่าความต้านทานวัดที่เซนเซอร์แล้วนำค่าไปเปรียบเทียบกับตาราง เพราะค่าความต้านทานจะแปรผันตาม อุณหภูมิ (ตั้งย่านวัดโอห์มมิเตอร์ที่ x1KΩ)

J6

เซนเซอร์อุณ	หภูมิแล	กเปลี่ยนค	วามร้อนผิดปกติ
<u>ตารางที่ 9</u>		เทอร์มิสเตอร์	ค่าความต้านทาน

-20

-15

-10

-5 0

5 10

15

20

25

30 35

40 45

50

อุณหภูมิ

 $R(25^{\circ}C) = 20 k\Omega$

B = 3950 K**Ω**

197.8

148.2 112.1

85.60

65.93 51.14

39.99

31.52

25.02

20 16.10

13.04

8.707 7.176

ขั้นตอนการตรวจเช็ค ตรวจเช็คจุดต่อสายว่าหลุดหลวมหรือไม่ ให้ทำการนำมัลติมิเตอร์ตั้งย่าน วัดค่าความต้านทานวัดที่เซนเซอร์แล้วนำค่าไปเปรียบเทียบกับตาราง เพราะค่าความต้านทานจะแปรผันตาม อุณหภูมิ (ตั้งย่านวัดโอห์มมิเตอร์ที่ x1KΩ)

|--|

J8

เซนเซอร์อุณหภูมิท่อของเหลวผิดปกติ

เทอร์มิสเตอร์	ค่าความต้านทาน
A	R(25°C) = 20 k Ω
อุณหภูม	B = 3950 K Ω
-20	197.8
–15	148.2
-10	112.1
-5	85.60
0	65.93
5	51.14
10	39.99
15	31.52
20	25.02
25	20
30	16.10
35	13.04
40	10.62
45	8.707
50	7.176

<u>ตารางที่ 10</u>

ขั้นตอนการตรวจเช็ค ตรวจเซ็คจุดต่อสายว่าหลุดหลวมหรือไม่ ให้ทำการนำมัลติมิเตอร์ตั้งย่าน วัดค่าความต้านทานวัดที่เซนเซอร์แล้วนำค่าไปเปรียบเทียบกับตาราง เพราะค่าความต้านทานจะแปรผันตาม อุณหภูมิ (ตั้งย่านวัดโอห์มมิเตอร์ที่ x1KΩ)

E7

มอเตอร์พัดลมคอยล์ร้อนเสียหรือ PCB เสีย

ขั้นตอนการตรวจเช็คมอเตอร์คอล์ยร้อน

- 1. เริ่มจาการตรวจเช็คสายว่าหลุดหลวมหรือไม่
- 2. ตรวจเช็คการหมุนของมอเตอร์ว่าหมุนราบเรียบหรือไม่
- 3. ถ้ามอเตอร์หมุนราบเรียบให้ใช้มิเตอร์เซ็คแรงดันไซน์

ขั้นตอนการตรวจเช็คมอเตอร์คอยล์ร้อนรุ่น RKM09SV2S, RKM12SV2S, RKM15SV2S, RKM18SV2S, RKM24SV2S, RKQ18SV2S

- 1. ปิดการทำงานของเครื่องด้วยรีโมทควบคุม
- 2. ตรวจสอบแรงดันไซน์ระหว่าง Pins 1 3 และหมุนมอเตอร์พัดลมด้วยมือ ผลที่ได้เข็มจะกระดิกขึ้น ลง
- 2. ตรวจสอบแรงดันไซน์ระหว่าง Pins 3 5 และหมุ่นมอเตอร์พัดลมด้วยมือ ผลที่ได้เข็มจะกระดิกขึ้น ลง
- 3. ปิดแหล่งจ่ายไฟและถอดขั้วต่อมอเตอร์พัดลมออกจากแผงควบคุม แล้ววัดค่าความต้านทานของสาย U-V (1-3) และ V-W
 (3-5) ค่าความต้านทานประมาณ 45 65 Ω
 PCB

ขั้นตอนการวัดมอเตอร์คอยล์ร้อน รุ่น RKM28NV2S

- 1. ปิดการทำงานของเครื่องและปิดเมนไฟถอดขั้วมอเตอร์ออกจากแผง PCB
- 2. วัดแรงดันไฟฟ้าระหว่างขั้ว 4 กับ 7 ต้องได้ 320 VDC.
- 3. วัดแรงดันควบคุมระหว่างขั้ว 3 กับ 4 ต้องได้ 15 VDC.
- 4. วัดแรงดันควบคุมการหมุนที่ขั้ว 3 กับ 2 ต้องได้ค่า 0 6.5 VDC
- 5. ปิดเมนไฟและเสียบขั้วมอเตอร์เข้าไปใหม่
- วัดสัญญาณพัลส์ระหว่างขั้ว 1 กับ 4 แรงดันไฟฟ้าที่วัดได้ (0- 15 VDC) แต่ถ้าเป็นมิเตอร์ เข็มจะมีการดีขึ้นลงของเข็ม
 PCB

ขั้นตอนการวัดมอเตอร์คอยล์ร้อน รุ่น RKQ09/12SV2S

- 1. เช็คสายไฟมอเตอร์ ว่ามีการ รอยไหม้เสียหาย และจุดต่อสายไฟ ว่าแน่นหรือไม่
- ปิดแหล่งจ่ายไฟและถอดขั้วต่อมอเตอร์พัดลมออกจากแผงควบคุม แล้ววัดค่าความต้านทานของสาย U-V (12-9) และ V W (9-6) ประมาณ 90-100 Ω
- 3. เปิดแหล่งจ่าย , เครื่องยังไม่ทำงานและมอเตอร์ยังต่ออยู่ที่แผงควบคุมแล้วเซ็คตามขั้นตอนการตรวจเซ็คด้านล่าง
- 4. เช็คแรงดันไฟฟ้าระหว่างขั้ว 10 กับ 11 ต้องได้ 15 VDC
- วัดสัญญาณพัลส์ของ Hall IC โดยวัดขั้ว 10 กับ 12 และ 10 กับ 13 โดยทำการหมุนมอเตอร์ด้วยมือ แรงดันไฟฟ้าที่วัดได้ (0-15 VDC) แต่ถ้าเป็นมิเตอร์เข็มจะมีการตีขึ้นลงของเข็ม

4. การตั้งค่าการทำงานเครื่องปรับอากาศ Field Settings

4.1 การตั้งค่าช่องสัญญาณ

เมื่อติดตั้งเครื่องปรับอากาศ 2 เครื่องในห้องเดียวกันสามารถกำหนดหมายเลขเครื่องที่รีโมทคอนโทรลไร้สาย

4.1.1 ขั้นตอนการกำหนดหมายเลขเครื่องปรับอากาศ รุ่น FTKM_S

- 1. ถอดฝาครอบรีโมทคอนโทรลออก
- ตัดจั้มเปอร์ตำแหน่ง J4 ออก
- 3. กดปุ่ม Temp 🔺+ Temp 🛡+ Mode พร้อมๆกัน
- 4. กดปุ่ม Temp ▲ หรือ Temp ▼ เพื่อเลือก A
- 5. กดปุ่ม Mode เพื่อเข้าสู่โหมดการตั้งค่าหมายเลขเครื่อง แล้ว สัญญาณไฟการทำงานของชุดภายในจะกระพริบเป็นเวลา 1 นาที
 6. กดปุ่ม ON/OFF ที่เครื่องภายในอาคารในขณะที่ไฟสัญญาณการ ทำงานกะพริบ

ON/OFF buttor

(R23292)

7. กดปุ่มโหมดบนรีโมทคอนโทรลเป็นเวลา 5 วินาทีเพื่อกลับสู่ โหมดปกติ

4.1 การตั้งค่าช่องสัญญาณ (ต่อ)

เมื่อติดตั้งเครื่องปรับอากาศ 2 เครื่องในห้องเดียวกันสามารถกำหนดหมายเลขเครื่องที่รีโมทคอนโทรลไร้สาย

4.1.2 ขั้นตอนการกำหนดหมายเลขเครื่องปรับอากาศ รุ่น FTKQ_S

- 1. ถอดฝาครอบรีโมทคอนโทรลออก
- 2. ตัดจั้มเปอร์ออก
- 3. กดปุ่ม Temp ▲+ Temp ▼+ OFF พร้อมๆกัน
- 4. กดปุ่ม Temp 🛦 หรือ Temp 🔻 เพื่อเลือก A
- 5. กดปุ่ม FAN เพื่อเข้าสู่โหมดการตั้งค่าหมายเลขเครื่อง แล้ว สัญญาณไฟการทำงานของชุดภายในจะกระพริบเป็นเวลา 1 นาที
 6. กดปุ่ม ON/OFF ที่เครื่องภายในอาคารในขณะที่ไฟสัญญาณการ ทำงานกะพริบ
- 7. กดปุ่ม FAN บนรีโมทคอนโทรลเป็นเวลา 5 วินาทีเพื่อกลับสู่ โหมดปกติ

Jumper	Address
EXIST	1
CUT	2

4.2 ขั้นตอนการปั้มดาวุน์

เมื่อต้องการย้ายเครื่องปรับอากาศควรทำการป[ั]้มดาวน์เพื่อป้องกันสิ่งแวดล้อม

1. กดปุ่ม ON/OFF ที่อยู่บนเครื่องปรับอากาศภายในค้างไว้ประมาณ 5 วินาที เพื่อเริ่มเดินระบบการงาน

- 2. เปิดฝาครอบสต๊อปวาล์วท่อแก๊สและท่อของเหลวออก
- 3. หลังจากนั้นรอประมาณ 5 ถึง 10 นาที เมื่อเครื่องเริ่มทำงานให้ใช้ประแจหกเหลี่ยมปิดวาล์วท่อของเหลว
- 4. หลังจากนั้นอีก 2 ถึง 3 นาที ให้ปิดวาล์วท่อแก๊ส และหยุดระบบทำความเย็นโดยรีโมทคอนโทรล

4.3 วิธีการเข้าโหมดทดสอบเดินเครื่อง RA

4.4 โหมดบริการของรีโมทคอลโทรล

้วิธีการเข้า Service mode รีโมทคอลโทรล สำหรับรุ่น FTKM_S ดังต่อไปนี้

วิธีการเข้า Service mode รีโมทคอลโทรล สำหรับรุ่น FTKM_S (ต่อ)

<u>ตารางที่ 11</u> รายการตั้งค่าโหมดบริการของรีโมทคอลโทรล

ลำดับการตั้งค่า		เงื่อนไขตั้งค่า	ตั้งค่าจากโรงงาน
1	ความสว่าง	0 : ปิด 1 : สว่างน้อย 2 : สว่างปกติ	2 : สว่างปกติ
2	การตั้งค่าการทำความสะอาดแผ่นกรอง	0: ระยะสั้น 1: ระยะยาว	N/A
3	แขวน	0 : ปิด 1 : เปิด	1 : เปิด
4	ลดความชื้น	0 : ปิด 1 : เปิด	0 : ปิด
5	ควบคุมความร้อน Preheating control	0 : ปิด 1 : เปิด	N/A
6	ปรับตั้งค่าอุณหภูมิห้อง (Cooling)	0: Low 2 (–2°C) 1: Low 1 (–1°C) 2: Standard (0°C) 3: High 1 (+1°C) 4: High 2 (+2°C)	2 : Standard
7	ปรับตั้งค่าอุณหภูมิห้อง (heating)	0: Low 2 (–2°C) 1: Low 1 (–1°C) 2: Standard (0°C) 3: High 1 (+1°C) 4: High 2 (+2°C)	N/A
8	การตั้งค่าอัตราการไหลของอากาศเมื่อเทอร์โม OFF ใน ระหว่างการทำความเย็น	0 : ไม่ลดแรงลม 1 : ลดแรงลม	N/A
9	ตั้งค่า Wireless/HA การตั้งค่าการทำงานอัตโนมัติ	0 : Wireless 1 : HA	N/A
10	รีสตาร์ทอัตโนมัติ Auto-restart	0: ปิด 1: เปิด	1: เปิด
11	การตั้งค่าช่วงอุณหภูมิ	0: Standard 1: - 2: -	N/A

4.4 โหมดบริการของรีโมทคอลโทรล (ต่อ)

้วิธีการเข้า Service mode รีโมทคอลโทรลสำหรับรุ่น FTKQ_S ดังต่อไปนี้

วิธีการเข้า Service mode รีโมทคอลโทรล (ต่อ)

หมายเหตุ :

กรณีเปลี่ยนแผง PCB เครื่องปรับอากาศตัวในใหม่ การตั้งค่าแผง PCB ทั้งหมดจะถูกตั้งค่าจากโรงงาน ถ้าต้องการปรับตั้งค่า

การใช้งาน

<u>ตารางที่ 12</u> รายการตั้งค่าโหมดบริการของรีโมทคอลโทรล

ลำดับการตั้งค่า	การตั้งค่า		
	เงื่อนไขตั้งค่า	ตั้งค่าจากโรงงาน	
1 : ความสว่าง	0 : ปิด 1 : สว่างน้อย 2 : สว่างปกติ	2 : สว่างปกติ	
2 : การตั้งค่าการทำความสะอาดแผ่นกรอง	ไม่สามารถตั้งค่า	N/A	
3 : แขวน	0:ปิด 1:เปิด	1 : เปิด	
4 : ลดความชื้น	0:ปิด 1:เปิด	0 : ปิด	
5 : ควบคุมความร้อน Preheating control	ไม่สามารถตั้งค่า	N/A	
6 : ปรับตั้งค่าอุณหภูมิห้อง (Cooling)	0: Low 2 (–2°C) 1: Low 1 (–1°C) 2: Standard (0°C) 3: High 1 (+1°C) 4: High 2 (+2°C)	2 : Standard	
7 : ปรับตั้งค่าอุณหภูมิห้อง (heating)	ไม่สามารถตั้งค่า	N/A	
8 : การตั้งค่าอัตราการไหลของอากาศเมื่อเทอร์โม OFF ในระหว่างการทำความเย็น	0 : ไม่ลดแรงลม 1 : ลดแรงลม	0 : ไม่ลดแรงลม	
9 : ตั้งค่า Wireless/HA การตั้งค่าการทำงาน อัตโนมัติ	0 : Wireless 1 : HA	0 : Wireless	
10 : Auto restart	0: ปิด 1: เปิด	1: เปิด	

